Аксиомы стереометрии и их следствия
Плоскость, притом только одна,  проходит  через *
Точки А, В, С и D не лежат в одной плоскости, следовательно *
Через точку М, не лежащую на прямой а, провели прямые, пересекающие прямую а. Тогда: *
Класс *
Основными  фигурами в стереометрии являются: *
Required
Точки А, В, С лежат на одной прямой, точка D не лежит на ней.   Через  каждые три точки проведена одна плоскость. Сколько различных   плоскостей при этом получилось? *
Фамилия, имя учащегося *
На рисунке скрещивающимися прямыми являются: *
Captionless Image
Required
На рисунке плоскости АКВ принадлежат точки:                                         *
Captionless Image
На рисунке скрещивающимися являются прямые *
Captionless Image
Required
Какую из перечисленных плоскостей пересекает прямая EF? *
Captionless Image
Что можно сказать о взаимном расположении двух плоскостей, которые имеют три общие точки, не лежащие на одной прямой? *
На рисунке плоскости  АМВ принадлежат точки: *
Captionless Image
Required
Если две точки прямой принадлежат плоскости, то прямая *
На рисунке  прямая МЕ и плоскость АВС   *
Captionless Image
На рисунке  прямая КЕ пересекает плоскость АВС в точке лежащей на прямой   *
Captionless Image
Сколько общих точек могут иметь две различные плоскости? *
Точки A,B,C не лежат на одной прямой. Выберите верное утверждение: *
Captionless Image
В кубе АВСDA1B1C1D1 плоскости  D1B1B и B1A1D1 *
Captionless Image
Плоскость, притом только одна,  проходит  через *
Назовите общую прямую плоскостей AFD и DEF. *
Выберите верное утверждение. *
Какое из следующих утверждений верно? *
Прямая а лежит в плоскости α и пересекает плоскость β. Каково взаимное расположение плоскостей α и β? *
Точка М лежит вне плоскости  четырехугольника АВСD. Плоскости  МАВ и МВС  пересекаются по прямой *
Captionless Image
Если три точки не лежат на одной прямой, то положение плоскости в пространстве они: *
Какое из следующих утверждений верно? *
Submit
Clear form
Never submit passwords through Google Forms.
This content is neither created nor endorsed by Google. - Terms of Service - Privacy Policy

Does this form look suspicious? Report